La prima cosa che colpisce di queste foto è la posizione; per riuscire a catturare la serie Luna-Terra (e non viceversa) il punto di ripresa deve situarsi non solo ben oltre l'orbita standard dei satelliti ma soprattutto al di là dell'orbita lunare. A questa prima osservazione dovrebbe seguire la domanda sul tipo di orbita seguita dal satellite: solare; terrestre; coppia Terra-Luna?
Uno schema semplificato delle orbite "classiche" usati dai satelliti (zoom QUI). Credit: |
La maggior parte dei satelliti, siano essi civili o militari, ha il compito di "coprire" il nostro pianeta o anche solo porzioni di esso; tipici esempi di satelliti "prossimali" sono i satelliti per le telecomunicazioni, quelli che assicurano la copertura GPS e quelli meteo. All'interno di questa categoria si trovano poi i satelliti in orbita geostazionaria (o meglio isosincrona) che per essere tali devono trovarsi a circa 42 mila km dal centro della Terra. Sottraendo il raggio della Terra all'equatore si ottiene il valore è pari a 36 mila km di altezza.
Orbita isosincrona: orbita stabile, tale per cui Forza centrifuga=Forza gravitazionale, e il periodo di rotazione sia uguale a quello del pianeta attorno a cui orbita. Nel caso di un satellite geostazionario il periodo di riferimento è 23 ore, 56 minuti e 4,09 secondi.
Un satellite in orbita ad una distanza diversa da quella geostazionaria si muoverà più lentamente (o velocemente se ad una altezza inferiore) rispetto alla rotazione della Terra e quindi ci apparirà in movimento.Nota. La Luna si trova ad una distanza media di 385 mila km ed ha un orbita sincrona, cioè ha ha un periodo di rivoluzione pari al periodo di rotazione medio del corpo orbitato. In altre parole mostra sempre la stessa faccia ma non è geostazionaria e infatti la vediamo "muoversi" in cielo. Tra le coppie pianeta/satelliti naturali l'unico, tra quelli noti, che credo abbia orbita isosincrona e sincrona è la coppia Plutone-Caronte: un plutoniano vedrebbe non solo sempre la stessa "faccia" di Caronte (come noi con la Luna) ma la vedrebbe ferma nella stessa posizione.
La formula per calcolare l'orbita geostazionaria
Un'altra categoria è quella dei satelliti progettati per vedere altro rispetto alla Terra, siano questi telescopi spaziali come Keplero (posti appena all'esterno dell'orbita terrestre e con orbita eliocentrica) o satelliti interessati all'attività solare come DISCOVR (orbita interna a quella terrestre ed eliocentrica) che ha fatto le foto di cui oggi ci occupiamo.
Il telescopio Hubble è una eccezione in quanto pur essendo votato primariamente all'osservazione dello spazio è sufficientemente prossimo alla Terra da avere un orbita geocentrica.L'acronimo DSCOVR sta per Deep Space Climate Observatory e ha una missione duplice: monitorare il Sole e la Terra. Per tale motivo si è scelto di posizionarlo in orbita nell'area nota come punto di Lagrange 1 (L1), il che assicura piena e costante visibilità del Sole e della Terra senza "eclissi" reciproche.
In figura sono mostrati i punti di Lagrange in un sistema a 3 corpi: si tratta delle aree in cui un oggetto di massa molto inferiore ai 3 attori, ad esempio un satellite, è sottoposto a forze gravitazionali che si annullano tra loro. Il risultato è un orbita stabile. Per una raffigurazione dei pozzi gravitazionali e del perché i punti L siano stabili vedere QUI. (credit: Xander89). |
Nota. Tra le funzioni principali del satellite DISCOVR vi è quella di rilevare in anticipo ogni variazione del campo magnetico solare e anomale emissioni di particelle durante eventi noti come espulsioni di massa coronale, il cui impatto su reti elettriche, telecomunicazioni e funzionamento dei satelliti può avere serie conseguenze. Grazie alla posizione, il satellite è in grado di lanciare un allarme, in caso di tempesta solare, 30-45 minuti prima che le particelle colpiscano l'alta atmosfera terrestre, un tempo sufficiente per prendere le contromisure adeguate.
A questi compiti si aggiungono misurazioni sia della radiazione riflessa che di quella emessa dalla Terra oltre che le immagini multi-spettrali del lato soleggiato del nostro pianeta.
credit: NASA e NOAA |
Altro vantaggio è che a differenza delle orbite "classiche" dei satelliti, il DSCOVR rimane costantemente nella zona di luce solare permettendo così un monitoraggio continuo della nostra stella. Per lo stesso motivo avrà anche piena visibilità della Terra mentre ruota intorno al suo asse. Per motivi simili i satelliti geocentrici coprono una porzione ridotta della superficie terrestre.
Articoli riguardanti la Luna in questo blog --> qui.
Nessun commento:
Posta un commento