La chiralità della molecole, nota dal XIX secolo, è importante in ambito farmaceutico dato che gli enantiomeri, per quando chimicamente identici, non sempre sono funzionalmente equivalenti.
La chiralità è la proprietà di un oggetto di non essere sovrapponibile alla sua immagine speculare. Due molecole chirali possiedono le medesime proprietà fisiche tranne nel potere rotatorio (identico per intensità ma opposto di segno per ognuna di esse) della luce polarizzata.
Chiralità negli aminoacidi |
Le molecole chirali, ripeto identiche ma speculari, mostrano lo stesso comportamento chimico nei confronti di sostanze non chirali mentre la loro interazione chimica nei confronti di altre molecole chirali è diversa (esattamente come una mano destra, stringendo un’altra mano, riesce a distinguere se la mano stretta è destra o sinistra). Questo spiega per quale ragione (a volte) due enantiomeri dello stesso principio attivo di un farmaco, a volte, non sono equivalenti nel profilo beneficio/tossicità, conseguenza di quale associazione mirror-twin sia presente tra effettore e bersaglio.
Esempio di tale differenza funzionale la ketamina, in cui l'enantiomero R- presenta un miglior profilo funzionale e di sicurezza.
Ecco perché alcuni farmaci possono essere costituiti dalla forma racemica (mix di enantiomeri) del principio attivo mentre altri devono contenere esclusivamente l'enantiomero destrogiro (R-) o levogiro (L-).
L’analisi con cui si stabilisce la chiralità usa la luce polarizzata circolarmente nella quale il campo elettromagnetico ruota in senso orario o antiorario, formando un “cavatappi” destro o sinistro in cui l’asse è lungo la direzione del raggio di luce; la luce "chirale" viene assorbita in modo diverso dalle molecole R- o L-. Effetto piccolo, ma misurabile, perché la lunghezza d’onda della luce è maggiore della dimensione di una molecola: il “cavatappi luminoso” è troppo grande per percepire la struttura chirale della molecola in modo efficiente. Un metodo migliorato per l'analisi si avvale del laser ad impulsi.
Risulta chiara allora l'importanza di individuare e separare "facilmente" i vari enantiomeri specie quando mostrano uguale comportamento, tranne che durante l'interazione con un bersaglio chirale.
In ambito biologico tre sono le (macro)molecole in cui l'importanza della chiralità è evidente e si manifesta con il fenomeno della omochiralità (prevale un solo enantiomero): zuccheri, aminoacidi e acidi nucleici (la chiralità di questi ultimi è invero la diretta conseguenza della presenza del ribosio - monosaccaride pentosio - nell'unità fondante, cioè il nucleotide). Vedi nota** a fondo pagina.
Poiché in genere le caratteristiche chimico-fisiche degli enantiomeri sono identiche, la ragione della dominanza di un enantiomero come costituenti degli organismi terrestri è verosimilmente conseguenza della specificità del macchinario enzimatico/strutturale che ha amplificato con l’evoluzione la rottura della simmetria già ai tempi del mondo prebiotico. Non ci sono altre ragioni infatti per cui gli zuccheri sono nella quasi totalità D- (cosa che si riflette anche nei nucleotidi con il D-ribosio) e gli aminoacidi L-.
Tra le domande rimaste a lungo senza risposta verificare la possibilità che l'affermazione di un solo enantiomero sia stata guidata da vincoli durante la biosintesi. Una ipotesi classica ipotizzava la esistenza di proteine costituite prevalentemente da residui L-aminoacidi (invece di D-) come conseguenza del D-ribosio negli acidi nucleici, secondo uno schema "specchio".
Nota. Durante la sintesi proteica i “mattoncini” (aminoacidi) da assemblare vengono trasportati al ribosoma dal tRNA (mediatore tra la tripletta del codone genetico e l'aminoacido) che viene caricato con il corretto aminoacido da enzimi noti come aminoacil-tRNA sintetasi, enzimi che mostrano una netta preferenza per L-aminoacidi anche in presenza di entrambi gli enantiomeri.
Una sfida sperimentale a questa ipotesi è stata recentemente pubblicata su Nature Communications che non ha potuto confermarla lasciando aperto il dibattito.
I test di laboratorio sono stati fatti su 15 diversi ribozimi (molecole di RNA con attività enzimatica) capaci di catalizzare i passaggi finali della sintesi di aminoacidi a partire da precursori, molecole che potrebbero essere esistite nel mondo (prebiotico) a RNA. Il risultato è stata la produzione di D- e L- aminoacidi in egual misura, a dimostrazione che l’RNA manca di una predisposizione strutturale tale da favorire una data forma di aminoacidi.
L’omochiralità della vita come noi la conosciamo non sarebbe quindi il risultato di un determinismo chimico, ma di una selezione casuale avvenuta successivamente quando emersero “limiti” nell’assorbimento/metabolismo dell’altro enantiomero, conseguenza della struttura delle proteine evolutesi.
Un contributo importante a tale “spostamento dell’equilibrio” potrebbe essere venuto dagli aminoacidi e dai nucleotidi originati dallo spazio, veicolati dal massiccio bombardamento meteoritico subito dalla Terra primordiale. Indizi in tal senso vengono da studi condotti sui meteoriti come quello del 1997 (che mostrò come tra gli aminoacidi trovati sui resti gli L-aminoacidi erano del 2-9% più abbondanti rispetto alla forma D-) ed uno più recente, del 2021.
Altro articolo interessante sull'argomento "Prebiotic chiral transfer from self-aminoacylating ribozymes may favor either handedness" (Nature Communications, 2024)
** Nota aggiuntiva sulle molecole chirali.
Carboidrati. Il glucosio è una molecola chirale (due enantiomeri, D- e L- glucosio) di cui solo la forma D- è quella prodotta/utilizzata dagli organismi viventi. Pur essendo versioni speculari l’uno dell’altro le nostre cellule (quindi proteine ed enzimi) sono in grado di utilizzare solo la forma D-Aminoacidi. Tranne la glicina tutti gli aminoacidi sono chirali. In natura tuttavia la forma nettamente più abbondante (>90%) nell’organismo è la forma L- sebbene in alcuni occasioni ci siano picchi locali di incremento di D-aminoacidi (ad esempio il D-aspartato durante lo sviluppo del cervello).Occasionalmente si trovano D-aminoacidi sia in forma libera che come “mattoni” delle proteine originati sia dall'azione di enzimi come le racemasi che per eventi di racemizzazione spontanea degli L-aminoacidi una volta incorporati nella proteina. Nella forma libera i D-aminoacidi sono raggruppati in 3 categorie in base alla loro capacità di funzionare come agonisti sui recettori NMDA, di agire in modo indipendente dai recettori NMDA o se inerti. Oltre che per l'azione delle racemasi una importante frazione di questi D-aminoacidi sono assunti dall’esterno (cibo processato da batteri, ad es. formaggi e yogurt).
Fonte
- Prebiotic chiral transfer from self-aminoacylating ribozymes may favor either handedness
Josh Kenchel et al. Nature Communications (2024)
***
Giochi per scienziati di domani (238 esperimenti in una scatola)
... e una lettura interessante per i grandi
"The Vital Question" (Nick Lane) |
Nessun commento:
Posta un commento